
File: DISTIL 309501 . By:DS . Date:11:07:01 . Time:03:06 LOP8M. V8.0. Page 01:01
Codes: 3582 Signs: 1588 . Length: 50 pic 3 pts, 212 mm

Journal of Approximation Theory � AT3095

journal of approximation theory 91, 226�243 (1997)

Asymptotic Behavior of a Poincare� Recurrence System*

Miha� ly Pituk

Department of Mathematics and Computing, University of Veszpre� m,
P.O. Box 158, 8201 Veszpre� m, Hungary

Communicated by Paul Nevai

Received May 22, 1996; accepted in revised form October 15, 1996

We establish asymptotic formulae for the solutions of the first order recurrence
system xn+1=(A+Bn) xn , where A and Bn (n=0, 1, ...) are square matrices and
��

n=0 &Bn&2<�. As a consequence, we confirm a recent conjecture about the
asymptotic behavior of the solutions of the higher order scalar equation
u(n+1)=�k

i=0 (ci+di (n)) u(n&i ). � 1997 Academic Press

1. INTRODUCTION AND MAIN RESULTS

Consider the system of first order recurrence equations

xn+1=(A+Bn) xn , (1.1)

where xn (n=0, 1, ...) are k-dimensional complex column vectors and A
and Bn (n=0, 1, ...) are k_k matrices with complex entries.

Let & }& denote any norm of a vector or the associated induced norm of
a square matrix.

Ma� te� and Nevai [5] have proved that if the eigenvalues *1 , *2 , ..., *k

of A have distinct moduli and !1 , !2 , ..., !k are the corresponding eigen-
vectors, then

lim
n � �

&Bn&=0 (1.2)

implies that for every eventually nonzero solution [xn] of (1.1) there exist
an index i # [1, ..., k] and a sequence of complex numbers [`n] such that

lim
n � �

`nxn=!i . (1.3)
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In the case of the higher order scalar equation

u(n+1)= :
k

i=0

(ci+di (n)) u(n&i ), (1.4)

where ci (0�i�k) are complex constants and [di (n)]�
n=0 (0�i�k) are

complex sequences, the result of Ma� te� and Nevai reduces to the classical
theorem of Poincare� [8] which states that if the zeros *0 , *1 , ..., *k of the
characteristic equation

*= :
k

i=0

ci*&i (1.5)

of the corresponding equation with constants coefficients

u(n+1)= :
k

i=0

ciu(n&i ) (1.6)

have distinct moduli and

lim
n � �

di (n)=0 (0�i�k), (1.7)

then for every eventually nonzero solution [u(n)] of (1.4) there exists an
index i # [0, 1, ..., k] such that

lim
n � �

u(n+1)
u(n)

=*i . (1.8)

Note that Poincare� 's theorem has applications in the study of the
asymptotic behavior of orthogonal polynomials (see [8, p. 252; 6, Section 2]
for details).

Formula (1.3) does not give an asymptotic approximation of the solu-
tions of (1.1), since the sequence [`n] in (1.3) is not determined explicitly.
Similarly, Poincare� 's theorem asserts that the solutions of (1.4) have the
property of convergence of ratios of successive values, but, for most pur-
poses, we would like to have information about the solutions themselves.
To obtain more precise asymptotic characterization of the solutions, it is
necessary to replace (1.2) and (1.7) with stronger conditions. For Eq. (1.1)
Coffman [2] and Li [4] have given results along these lines. For example,
as a consequence of [4, Theorem I], we obtain that if the eigenvalues
*1 , *2 , ..., *k of A are nonzero and distinct, then

:
�

n=0

&Bn&<� (1.9)
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implies that for each i # [1, ..., k] Eq. (1.1) has a solution [xn] such that

lim
n � �

*&n
i xn=!i , (1.10)

where !i is the eigenvector corresponding to *i . That is, (1.3) holds with
`n=*&n

i (n=0, 1, ...). In [10] Trench proved similar results under assump-
tions allowing conditional convergence of the series ��

n=0 Bn . The
corresponding result for the scalar equation (1.4) states (see, e.g., [2,
Theorem 10.1]) that if the roots *0 , *2 , ..., *k of (1.5) are nonzero and
distinct, then

:
�

n=0

|di(n)|<� (0�i�k) (1.11)

implies that for each i # [0, 1, ..., k] Eq. (1.4) has a solution [u(n)] such
that

lim
n � �

*&n
i u(n)=1. (1.12)

In a recent paper [7] the author described the asymptotic behavior of
the solutions of (1.4) under substantially weaker assumptions on the per-
turbation terms [di (n)] than (1.11). The main result of [7] shows (see
[7, Theorem 4.1]) that if the characteristic equation (1.5) has a dominant
root *0 (i.e., *0 is a simple root and all other roots satisfy |*|<|*0 | ) and
the perturbations satisfy

:
�

n=0

|di (n)| 2<� (0�i�k) (1.13)

and

:
�

n=0

|di(n+1)&di (n)|<� (0�i�k), (1.14)

then, for n0 large enough, Eq. (1.4) has a solution [u(n)] such that

lim
n � � _u(n)< `

n&1

&=n0
\*0+

1
f $(*0)

:
k

i=0

*&i
0 di (&)+&=1, (1.15)

where f is the characteristic function defined by

f (*)=*& :
k

i=0

ci*&i.
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However, the assumption that Eq. (1.5) has a dominant root seems to be
too strict. In [7] it was conjectured that the same conclusion is true if in
addition to (1.13) and (1.14) we assume that *0 is a simple root of (1.5)
and all other roots satisfy |*|{|*0 |.

In this paper, among others, we confirm the above-mentioned conjecture.
Actually, we prove a stronger result showing that assumption (1.14) can
also be eliminated. Our main results are formulated in the following two
theorems.

Theorem 1. Let *0 be a simple root of the characteristic function

f (*)=*& :
k

i=0

ci*&i

for Eq. (1.6) and suppose that if * is any other root of f, then |*|{|*0 |. If

:
�

n=0

|di (n)| 2<� (0�i�k), (1.13)

then, for sufficiently large n0 , (1.4) has a solution [u(n)]�
n=n0

such that

lim
n � � _u(n)< `

n&1

&=n0
\*0+

1
f $(*0)

:
k

i=0

*&i
0 di (&)+&=1. (1.15)

Theorem 1 will be deduced from the following more general result con-
cerning system (1.1).

Theorem 2. Suppose that *0 is a simple nonzero eigenvalue of A, and
that if * is any other eigenvalue of A, then |*|{|*0 |. Let ! and ' be nonzero
vectors such that A!=*0 ! and A*'=*0'.1 If

:
�

n=0

&Bn&2<�, (1.16)

then, for sufficiently large n0 , (1.1) has a solution [xn]�
n=n0

such that

lim
n � � _xn< `

n&1

&=n0

(*0+;&)&=!, (1.17)

where [;n]�
n=0 is the sequence of complex numbers defined by

;n=('*!)&1 '*Bn!, n=0, 1, ... . (1.18)

229A POINCARE� RECURRENCE SYSTEM

1 According to the standard notation, A* and *0 denote the conjugate transpose of A and
the conjugate of *0 , respectively.



File: DISTIL 309505 . By:DS . Date:11:07:01 . Time:03:06 LOP8M. V8.0. Page 01:01
Codes: 3001 Signs: 1898 . Length: 45 pic 0 pts, 190 mm

Remark 1. Under the assumptions of Theorem 2, '*!{0. This can be
shown by the following simple argument. Let B=[!, !2 , ..., !k] be the
basis for Ck consisting of generalized eigenvectors of A. Since ' is
orthogonal to any generalized eigenvector of A corresponding to an eigen-
value different from *0 and *0 is a simple eigenvalue of A, it follows that
'*!i=0, 2�i�k. Since '{0 can be written as a linear combination of
!, !2 , ..., !k , this implies '*!{0. Thus, ;n (n=0, 1, ...) is well defined.

Remark 2. By a standard result on infinite products, if �� |a& | 2<�,
then �� a& and >� (1+a&) converge or diverge together. Therefore, if in
addition to the assumptions of Theorem 2, we assume that the series
��

&=0 ;& converges (perhaps conditionally), then, for sufficiently large n0 ,
>�

&=n0
(1+;&�*0)=P, where P is finite and nonzero. In this case Theorem 2

yields the existence of a solution [xn]�
n=n0

of (1.1) such that

lim
n � �

*&n
0 xn=!.

The same argument applies to Theorem 1. Consequently, if in addition
to the assumptions of Theorem 1 we assume that the series ��

&=0 di (&)
(0�i�k) all converge (perhaps conditionally), then, for sufficiently large n0 ,
(1.4) has a solution [u(n)]�

n=n0
such that

lim
n � �

*&n
0 u(n)=1.

Remark 3. If the eigenvalues of A are nonzero and have distinct
moduli, then Theorem 2 yields the existence of k linearly independent solu-
tions (a fundamental system of solutions) of (1.1). A similar remark holds
for the scalar equation (1.4).

The proof of Theorems 1 and 2 will be given in Section 3 after presenting
some lemmas in Section 2.

2. LEMMAS

In this section, we establish some lemmas regarding l2-sequences. We will
use the following notation. Given a nonnegative integer n1 , denote Nn1

=
[n1 , n1+1, ...]. Let l2(Nn1

) denote the set of those (complex) sequences
|=[|n]�

n=n1
for which ��

n=n1
||n | 2<�. With the norm

&|&l2 ( Nn1
)=\ :

�

n=n1

||n | 2+
1�2

, |=[|n]�
n=n1

# l2(Nn1
),

l2(Nn1
) is a Banach space.
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Lemma 1. Let 0<+<1 and let #=[#n ]�
n=n1

# l2(Nn1
). Define

.n= :
n&1

i=n1

+n&1&i#i , �n= :
�

i=n

+i&n+1#i for n�n1 . (2.1)

Then the sequences .=[.n]�
n=n1

and �=[�n]�
n=n1

belong to l2(Nn1
) and

the estimates

&.& l2 (Nn1
)�(1&+)&1 &#& l2(Nn1

) (2.2)

and

&�& l2 (Nn1
)�+(1&+)&1 &#& l2 (Nn1

) (2.3)

hold.

Proof. The sequences . and � can be written in the form

.= :
�

m=1

+m&1Rm#

and

�= :
�

m=0

+m+1Lm#,

where R, L: l2(Nn1
) � l2(Nn1

) are the right and left shift operators, that is,
for #=[#n]�

n=n1
, R#=[(R#)n]�

n=n1
and L#=[(L#)n]�

n=n1
are defined by

(R#)n={0
#n&1

for n=n1 ,
for n�n1+1,

and

(L#)n=#n+1 for n�n1 .

Consequently,

&.& l2(Nn1
)� :

�

m=1

+m&1 &Rm& &#& l2 (Nn1
) ,

where & }& is the operator norm. Hence,

&.& l2 (Nn1
)� :

�

m=1

+m&1 &R&m &#& l2(Nn1
) .
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Similarly,

&�& l2 (Nn1
)� :

�

m=0

+m+1 &L&m &#& l2 (Nn1
) .

Since &R&=&L&=1, the last two estimates imply (2.2) and (2.3).

The following lemma will play an important role in the proof of Theorem 2.

Lemma 2. Let 0<+<1 and let #=[#n ]�
n=0 # l2(N0) be a sequence of

positive numbers. Then for every '>0 there exist an index n1 and a sequence
of positive numbers |=[|n]�

n=n1
# l2(Nn1

) such that

:
n&1

i=n1

+n&1&i#i (1+|i )+ :
�

i=n

+i&n+1#i (1+|i )='|n (2.4)

for all n�n1 .

Proof. For |=[|n]�
n=n1

# l2(Nn1
), define a sequence T|=[(T|)n]�

n=n1

by

(T|)n='&1 \ :
n&1

i=n1

+n&1&i#i (1+|i )+ :
�

i=n

+i&n+1#i(1+|i )+
for n�n1 . Since | is a bounded sequence, T| is well defined and,
according to Lemma 1, T| # l2(Nn1

). For any :, | # l2(Nn1
) and n�n1 , we

have

|(T:&T|)n |='&1 } :
n&1

i=n1

+n&1&i#i (:i&|i )+ :
�

i=n

+i&n+1#i (:i&|i )}
�'&1 max

i�n1

|:i&|i | (.n+�n)

with .n and �n given by (2.1). Consequently,

&T:&T|& l2 (Nn1
)�'&1 max

i�n1

|:i&|i | (&.& l2 (Nn1
)+&�& l2 (Nn1

))

�'&1 max
i�n1

|:i&|i | (1++)(1&+)&1 &#& l2(Nn1
) ,

where the last inequality is a consequence of (2.2) and (2.3). From this, in
view of the inequality maxi�n1

|:i&|i |�&:&|& l2 (Nn1
) , we get

&T:&T|& l2 (Nn1
)�'&1(1++)(1&+)&1 &#& l2 (Nn1

) &:&|& l2 (Nn1
) . (2.5)
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Since &#& l2 (Nn1
) � 0 as n1 � �, we can find n1 so that

&#& l2 (Nn1
)<'(1++)&1 (1&+).

Then T : l2(Nn1
) � l2(Nn1

) is a contraction mapping (cf. (2.5)) and by
Banach's theorem it has a unique fixed-point | # l2(Nn1

). Evidently, |
satisfies (2.4). It remains to show that | is a sequence of positive numbers.
We know that | can be written as a limit (in l2(Nn1

)) of successive
approximations

|[&+1]=T|[&], &=0, 1, 2, ...,

where |[0] # l2(Nn1
) is arbitrary. Taking |[0]#0, we see by easy induction

on & that

|[&]
n �'&1 \ :

n&1

i=n1

+n&1&i#i+ :
�

i=n

+i&n+1#i+ (2.6)

for n�n1 and &=1, 2, ... . For any fixed n�n1 ,

||[&]
n &|n |�&|[&]&|& l2 (Nn1

) � 0 as & � �.

Thus, |n=lim& � � |[&]
n . Letting & � � in (2.6), we obtain

|n�'&1 \ :
n&1

i=n1

+n&1&i#i+ :
�

i=n

+i&n+1#i+>0

for n�n1 and the proof is complete.

3. PROOFS OF THE THEOREMS

Proof of Theorem 2. We shall prove Theorem 2 in two steps. First we
give a proof in the case when *0=1 and then we show that the general case
can be reduced to the previous one.

Step 1. Assume that *0=1. Let _(A) denote the spectrum of A.
Define

_&1=[* # _(A): |*|<1],

_0=[1],

and

_1=[* # _(A): |*|>1].
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Clearly, _(A)=_&1 _ _0 _ _1 and we have the decomposition of Ck into a
direct sum,

Ck=X&1�X0 �X1 , (3.1)

where Xi is the linear subspace generated by the generalized eigenvectors of
A corresponding to those eigenvalues which belong to _i (i=&1, 0, 1). Let
L: Ck � Ck be the linear operator associated with matrix A, i.e.,

L(x)=Ax for x # Ck.

Denote

Li=L |Xi
,

the restriction of L to Xi (i=&1, 0, 1). It is well known that the subspaces
Xi (i=&1, 0, 1) are invariant under transformation L. Thus, Li maps Xi

into itself (i=&1, 0, 1). Let _(Li ) and *(Li ) denote the spectrum and the
spectral radius of Li , respectively. Obviously,

_(Li )=_i (i=&1, 0, 1) (3.2)

and

*(Li )=max[ |*|: * # _i ] (i=&1, 0, 1). (3.3)

For the spectral radius we also have the formula [3, Section 90, Excer-
cise 5(e)]

*(Li )= lim
n � �

n
- &Ln

i & (i=&1, 0, 1), (3.4)

where Ln
i denotes the nth iteration of L and & }& is the operator norm. The

decomposition (3.1) of Ck defines three projection operators ?i : Ck � Xi

(i=&1, 0, 1) in the following way: if x # Ck is written as x=x&1+x0+x1 ,
where xi # Xi (i=&1, 0, 1), then ?i (x) =def xi (i=&1, 0, 1). These projec-
tions have the properties

?i b ?i=?i (i=&1, 0, 1) (3.5)

?i b ?j=0 if i{j, i, j # [&1, 0, 1], (3.6)

and

?&1+?0+?1=idC k . (3.7)
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Since the subspaces Xi are invariant under transformation L, for each
i=&1, 0, 1, ?i commutes with L (cf. [3, Section 43, Theorem 2]); i.e.,

L b ?i=?i b L (i=&1, 0, 1). (3.8)

Since *0=1 is a simple eigenvalue of A, X0=span[!] and, hence,

L b ?0=?0 . (3.9)

From (3.3) and the definition of _&1 , it follows that *(L&1)<1. Further,
since 0 � _1=_(L1), L1 is invertible. If L&1

1 denotes the inverse of L1 , then
_(L&1

1 )=[*&1: * # _1] and, hence, *(L&1
1 )<1. From this and the formula

for the spectral radius (cf. (3.4)), it follows that if + is a constant satisfying

max[*(L&1), *(L&1
1 )]<+<1,

then there exists a constant K>0 such that

&Ln
&1&�K+n (3.10)

and

&L&n
1 &�K+n (3.11)

for all n�0. (Here L&n
1 =(L&1

1 )n for n�0.)
Let [;� n]�

n=0 be the sequence of complex numbers defined by

?0(Bn !)=;� n! for n�0. (3.12)

Since ' is orthogonal to any generalized eigenvector of A corresponding to
an eigenvalue different from *0=1, we have (cf. (3.7))

'*x='*?0(x) for all x # Ck (3.13)

which, together with (3.12), implies

'*Bn!='*?0(Bn!)=;� n '*!. (3.14)

Consequently (cf. Remark 1)

;� n=;n for n�0, (3.15)

where ;n is given by (1.18).
From (3.12) and (3.15), we see that

|;n |�&?0& &Bn& for n�0. (3.16)
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Therefore (by (1.16))

;=[;n]�
n=0 # l2(N0). (3.17)

Specially, ;n � 0 as n � � and, hence,

1+;n{0 for n�n0 (3.18)

whenever n0 is large enough.
Choose n0 so large that (3.18) is fulfilled and introduce the transformation

yn=
xn

>n&1
i=n0

(1+;i )
for n�n0 . (3.19)

A sequence [xn]�
n=n0

is a solution of (1.1) if and only if [yn]�
n=n0

satisfies

yn+1=Ayn+(Bn&Cn) yn (3.20)

for n�n0 , where

Cn=
;n

1+;n
(A+Bn). (3.21)

Consequently, it suffices to show that (3.20) has a solution [yn]�
n=n0

such
that yn � ! as n � �. We have

?0(Cn!)=
;n

1+;n
(?0(A!)+?0(Bn !))=

;n

1+;n
!+

;n

1+;n
?0(Bn !)=?0(Bn !),

the last equality being a consequence of (3.12) and (3.15). Consequently

?0(Cn ?0(x))=?0(Bn?0(x)) (3.22)

for all x # Ck. Define

#n=&Bn&+&Cn& for n�0. (3.23)

From (1.16) and (3.17), it follows that

&(1+;n)&1 (A+Bn)& � &A& as n � �

and, hence, (cf. (3.21)) &Cn&�const |;n |. Therefore (by (1.16) and (3.17))

#=[#n]�
n=0 # l2(N0). (3.24)
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Let B denote the linear space of those vector sequences y=[yn]�
n=n0

,
yn # Ck for n�n0 , for which

& y&B =def sup
n�n0

&?0(yn)&+ sup
n�n0

|&1
n &(?&1+?1)(yn)&<�, (3.25)

where |=[|n]�
n=n0

# l2(Nn0
) is a sequence of positive numbers which will

be specified later. It is easy to show that & }&B is a norm on B and (B, & }&B)
is a Banach space (cf. [1, Lemma 3]).

For y=[yn]�
n=n0

# B, define a vector sequence Fy=[Fyn]�
n=n0

by

Fyn=!+ :
n&1

i=n0

Ln&1&i
&1 (?&1((Bi&Ci ) yi ))

& :
�

i=n

?0((B i&Ci ) y i )& :
�

i=n

Ln&1&i
1 (?1((B i &Ci ) yi ))

for n�n0 . By virtue of (3.7) and (3.22), we have

?0((B i&Ci ) yi )=?0((Bi&Ci )((?&1+?1)(yi )+?0(yi )))

=?0((Bi&Ci )(?&1+?1)(yi )).

Consequently, Fyn can be written in the form

Fyn=!+ :
n&1

i=n0

Ln&1&i
&1 (?&1((Bi&Ci ) yi ))

& :
�

i=n

?0((Bi&Ci )(?&1+?1)(y i ))& :
�

i=n

Ln&1&i
1 (?1((Bi&Ci ) yi ))

for n�n0 . From this, by virtue of (3.5), (3.6), and (3.8), we get

?0(Fyn)=!& :
�

i=n

?0((Bi&Ci )(?&1+?1)(yi )), (3.26)

?&1(Fyn)= :
n&1

i=n0

Ln&1&i
&1 (?&1((Bi&Ci ) yi )), (3.27)

?1(Fyn)=& :
�

i=n

Ln&1&i
1 (?1((Bi&Ci ) yi )) (3.28)

for n�n0 .
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From the definition of the norm on B (cf. (3.25)), it follows that

&?0(yn)&�& y&B , &(?&1+?1)(yn)&�|n & y&B (3.29)

for y=[yn]�
n=n0

# B and n�n0 . Obviously,

&yn&=&?0(yn)+(?&1+?1)(yn)&�&?0(yn)&+&(?&1+?1)(yn)&

which, in view of (3.29), gives

&yn&�(1+|n) & y&B (3.30)

for y=[yn]�
n=n0

# B and n�n0 .
By virtue of (3.23), (3.26), and (3.29), we can estimate the norm of

?0(Fyn) as

&?0(Fyn)&�&!&+ :
�

i=n

&?0& &Bi&Ci& &(?&1+?1)(yi )&

�&!&+ :
�

i=n

&?0& #i|i & y&B

�&!&+&?0& & y&B &#&l2 (Nn0
) &|& l2 (Nn0

)

for n�n0 , where the last inequality is a consequence of the Schwarz
inequality. Thus,

sup
n�n0

&?0(Fyn)&<�. (3.31)

Taking into account (3.10) and (3.11), we obtain (cf. (3.30))

&(?&1+?1)(Fyn)&� :
n&1

i=n0

&Ln&1&i
&1 & &?&1 & &Bi&Ci& &yi&

+ :
�

i=n

&Ln&1&i
1 & &?1& &Bi&Ci& &yi&

� :
n&1

i=n0

K+n&1&i &?&1& #i (1+|i ) & y&B

+ :
�

i=n

K+i&n+1 &?1& #i (1+|i ) & y&B .
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Hence,

&(?&1+?1)(Fyn)&�K(&?&1&+&?1&) \ :
n&1

i=n0

+n&1&i#i (1+|i )

+ :
�

i=n

+i&n+1#i (1+|i )+ & y&B (3.32)

for n�n0 .
By Lemma 2, there exist an index n1 and a sequence of positive numbers

|=[|n]�
n=n1

# l2(Nn1
) such that

:
n&1

i=n1

+n&i&1#i (1+|i )+ :
�

i=n

+i&n+1#i (1+|i )= 1
3 (K(&?&1&+&?1&))&1 |n

for n�n1 . Consequently, if n0�n1 and | is chosen as above, then
(cf. (3.32))

&(?&1+?1)(Fyn)&� 1
3|n & y&B for n�n0 (3.33)

and, hence,

sup
n�n0

|&1
n &(?&1+?1)(Fyn)&� 1

3 & y&B . (3.34)

From (3.31) and (3.34), we see that if n0�n1 and | is chosen as before,
then Fy is well defined and Fy # B.

Let y, z # B. For n�n0 , we have (cf. (3.26))

&?0(Fyn&Fzn)&=" :
�

i=n

?0((Bi&Ci )(?&1+?1)(yi&zi ))"
� :

�

i=n

&?0& &Bi&Ci & &(?&1+?1)(yi&zi )&

� :
�

i=n

&?0& #i |i & y&z&B .

Hence

&?0(Fyn&Fzn)&�&?0 & &#& l2 (Nn0
) &|& l2 (Nn1

) & y&z&B , (3.35)

provided n�n0�n1 .
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By similar estimates as in the proof of (3.33), we obtain

&(?&1+?1)(Fyn&Fzn)&� 1
3 |n & y&z&B , (3.36)

provided n�n0�n1 .
Choose n0�n1 so large that (3.18) is fulfilled; moreover,

&#& l2 (Nn0
)�

1
3 (&?0 & &|& l2 (Nn1

))
&1.

(Such an index certainly exists, since &#& l2(Nn0
) � 0 as n0 � �.) Then

estimates (3.35) and (3.36) imply that

&Fy&Fz&B� 2
3 & y&z&B

for all y, z # B. Thus, F : B � B is a contraction mapping and by Banach's
fixed-point theorem there exists a unique y # B such that y=Fy. From
(3.7)�(3.9), it follows easily that this fixed-point y=[yn]�

n=n0
is a solution

of (3.20); moreover, yn � ! as n � �. In view of relation (3.19) between the
solutions of (1.1) and (3.20), this completes the proof in the case when
*0=1.

Step 2. Assume that *0 is an arbitrary simple nonzero eigenvalue
of A. Consider the transformation

zn=xn *&(n&n0 )
0 for n�n0 .

A sequence [xn]�
n=n0

is a solution of (1.1) if and only if [zn]�
n=n0

is a
solution of the equation

zn+1=(A� +B� n) zn , (3.37)

where

A� =*&1
0 A, B� n=*&1

0 Bn

for n�0. Obviously, *� 0=1 is a simple eigenvalue of both A� and A� * with
the same eigenvectors ! and ', respectively. According to the previous part
of the proof (Step 1), if n0 is sufficiently large, then (3.37) has a solution
[zn]�

n=n0
such that

lim
n � �

zn

>n&1
i=n0

(1+;� i )
=!, (3.38)

where

;� n=('*!)&1 '*B� n!=*&1
0 ;n
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with ;n given by (1.18). But,

zn

>n&1
i=n0

(1+;� i )
=

xn*&(n&n0 )
0

>n&1
i=n0

(1+*&1
0 ;i )

=
xn

>n&1
i=n0

(*0+;i )

for n�n0 . Consequently, (3.38) reduces to (1.17) and the proof is complete.

Proof of Theorem 1. We shall prove Theorem 1 by applying Theorem 2.
Define the column vector xn=col(x0n , x1n , ..., xkn) for n�0 by putting

xin=u(n&i ) (0�i�k).

The recurrence equations

x0, n+1= :
k

j=0

(cj+dj (n)) xjn ,

xi, n+1=xi&1, n (1�i�k)

for n�0 are clearly equivalent to Eq. (1.4). These recurrence equations can
be written in the form as given in (1.1). The (k+1)_(k+1) matrix A has
the form A=[aij ]0�i, j�k , where a0j=cj (0� j �k), ai, i&1=1 (1�i�k)
and all other aij are 0; for n�0 the matrix Bn has the form Bn=
[bij (n)]0�i, j�k , where b0 j (n)=dj (n) (0� j �k) and all other bij (n) are 0.
That is,

A=\
c0 c1 } } } ck&1 ck

+ ,

1 0 } } } 0 0

0 1 } } } 0 0

} } } } } } } } } } } } } } }

} } } } } } } } } } } } } } }

0 0 } } } 1 0

Bn=\
d0(n) d1(n) } } } dk&1(n) dk(n)

+ .

0 0 } } } 0 0

0 0 } } } 0 0

} } } } } } } } } } } } } } }

} } } } } } } } } } } } } } }

0 0 } } } 0 0
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Clearly,

det(A&*I)=(&1)k \ :
k

i=0

ci*k&i&*k+1+ .

Consequently, *0 from Theorem 1 is a simple nonzero eigenvalue of A and
all other eigenvalues satisfy |*|{|*0 |. The eigenvector ! of A corre-
sponding to *0 has the form

!=col(1, *&1
0 , *&2

0 , ..., *&k
0 ).

An easy computation shows that

'=col(1, *0&c0 , *0
2&c0 *0&c1 , ..., *0

k&c0*0
k&1

&c1*0
k&2& } } } &ck&2*0&ck&1)

is an eigenvector of the adjoint matrix A* corresponding to the eigenvalue
*0 . Hence,

'*!=k+1& :
k&1

i=0

(k&i ) ci*&i&1
0 . (3.39)

We have

(*kf (*))$=*kf $(*)+k*k&1f (*). (3.40)

On the other hand,

(*kf (*))$=\*k+1& :
k

i=0

ci*k&i+$
=(k+1) *k& :

k&1

i=0

(k&i ) ci*k&i&1.

(3.41)

Comparing the right-hand sides of (3.40) and (3.41) and taking into
account that f (*0)=0, we get

f $(*0)=k+1& :
k&1

i=0

(k&i ) ci *&i&1
0 ='*! (cf. (3.39)).

Finally,

'*Bn!= :
k

i=0

*&i
0 di (n)
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for n�0. Consequently,

;n=('*!)&1 '*Bn!=
1

f $(*0)
:
k

i=0

*&i
0 di (n)

and the assertion follows from conclusion (1.17) of Theorem 2.
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